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Sequential Algorithms for Parameter Estimation 
Based on the Kullback-Leibler 

Information Measure 

EHUD WEINSTEIN. MElR FEDER. A N D  ALAN V.  OPPENHEIM 

Abstract-Methods of stochastic approximation are used to convert 
iterative algorithms for maximizing the Kullback-Leibler information 
measure into sequential algorithms. Special attention is given to the 
case of incomplete data, and several algorithms are presented to deal 
with situations of this kind. The application of these algorithms to the 
identification of finite impulse response (FIR) systems is considered. 
Issues such as convergence properties of the proposed algorithms, 
choice of initial conditions, the limit distribution, and the associated 
regularity conditions are beyond the scope of this correspondence. 
However, the existing literature on stochastic approximation, together 
with the ideas presented in this correspondence should provide the 
starting point for such analyses. 

I. INTRODUCTION 

Classical methods of parameter estimation such as maximum 
likelihood (ML) and maximum a posteriori (MAP) generally imply 
batch algorithms that require processing the received data as a 
whole. In a variety of applications, it is desirable to process the 
data sequentially. The advantage of a sequential algorithm over a 
batch algorithm is not necessarily in the final result, but in com- 
putational efficiency, reduced storage requirements, and the fact 
that an outcome may be provided without having to wait for all the 
data to be processed. Moreover, if the parameters of interest are 
subject to changes, e.g. ,  they are time varying, processing all the 
available data jointly is not desirable, even if we can accommodate 
the computational and storage load of the batch algorithm, since 
different data segments correspond to different parameter values. 
In that case, a sequential algorithm can be designed to be adaptive 
in  nature and track the varying parameters. 

In this paper, we use methods of stochastic approximation to 
convert iterative algorithms for maximizing the Kullback-Leibler 
information measure into sequential algorithms. Special attention 
is given in case of incomplete data, and several algorithms are de- 
veloped to deal with situations of this kind. We then consider the 
application of these algorithms to the problem of sequentially iden- 
tifying finite impulse response (FIR) systems. 

Important issues such as convergence properties of the proposed 
algorithms, choice of initial conditions, the limit distribution, and 
the associated regularity conditions are beyond the scope of this 
paper. However, the existing literature on stochastic approxima- 
tion together with the ideas presented in this paper should provide 
the starting point for such analyses. 
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11. SEQUENTIAL ALGORITHMS BASED ON THE KULLBACK- 
LEIBLER INFORMATION MEASURE 

Let y I ,  yz,  . . . , y,,, . . . be an ergodic sequence of observations 
(vector random variables) whose joint probability density depends 
on the vector 8 of unknown parameters. We want to derive se- 
quential algorithms for estimating 8 .  

We consider as our objective function the Kullback-Leibler in- 
formation measure [I]:  

J ( 8 )  = Eo,,{~ogfv(Y,,+l;  e ) }  ( 1 )  

wheref, ( y,, + I; 8 )  denotes the marginal probability density ofy,, + I, 

and E,,,{ . } denotes the statistical expectation of the bracketed 
quantity taken with respect to the actual (true) parameter value 8". 
Invoking Jensen's inequality [ 2 ]  

J ( 0 )  I J ( 8 , ) .  ( 2 )  

I f fv  ( y, ,;  e)  = fy ( y,,; 8,) a.e.  y,, implies 8 = Bo (identifiability 
condition), then J (  8 )  has a unique maximum at 8 = 8,. Therefore, 
by maximizing J ( 8 ) ,  we get the exact true parameter value. Un-  
fortunately, J ( 8 )  is not available to us since it involves the un- 
available expectation with respect to Bo. Therefore, given an iter- 
ative algorithm for maximizing J(8), we shall use the method of 
stochastic approximation (e.g. ,  [3], 141) to convert it into a se- 
quential algorithm. 

Consider first the gradient-search method for maximizing J (  8):  

where D J (  8 )  denotes the gradient (vector partial derivatives) of 
J (  e), and I denotes the index of iteration. In the transition from 
the first version of (3) to its second version, we have assumed that 
the regularity conditions for interchanging the expectation with dif- 
ferentiation operations are satisfied ( [ 2 ,  pp. 136-1371), Since the 
expectation in (3) is not available to us, it is approximated by its 
current realization. Setting 1 = n ,  we obtain the following sequen- 
tial algorithm: 

(4 )  
Invoking the ergodic nature of the { y,, sequence, the next itera- 
tion is performed using the next realization and thus achieves a 
time averaging that approximates the unavailable ensemble aver- 
age. If { p,, } is chosen to be a sequence of positive numbers such 
that 

m m 

lim p,, = 0, C p,, = 00, C p,5 < M < 03 ( 5 )  

(e.g. ,  p,, = @/n), then, under the stated regularity conditions ([SI, 
[6]), the algorithm in (4) converges almost surely (a.s.)  and in the 
mean square (m.s.) to the maximum of J ( B ) ,  that is the true pa- 
rameter value. Using well-known results from the theory of sto- 
chastic approximation (e.g., [7]-[9]), the limit distribution of the 
parameter estimate at the point of convergence can also be derived. 

If the observed sequence is not stationary, e .g . ,  when the vector 
parameters exhibit changes in time, and we want an adaptive al- 
gorithm, choosing a constant gain p,, = p is recommended. This 
corresponds to exponential weighting that reduces the effect of past 
observations relative to the new input data in order to track the 
varying parameters. 

The same method can be applied to convert iterative Newton- 
Raphson methods into sequential algorithms. 

,I - m ,,=I , , = I  

111. SEQUENTIAL ALGORITHMS USING INCOMPLETE DATA 
In many situations of interest, l o g f v (  y,,; 8 )  and its derivatives 

are complicated to express analytically. Motivated by the consid- 
erations leading to the expectation-maximization (EM) algorithm 
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[ I O ] ,  suppose we can find a vector x,, (the so-called complete data) ‘‘1, 

that is related to the observed y,, (the so-called incomplete data) by 

H,,(x,2) = Y,, ( 6 )  ,S!, 

where H,,( . ) is a noninvertible (many-to-one) transformation. Ex- 
press densities 

fX (x,,; 0 )  = .tx/y=y,,(~,I; 0 )  . MY,,; 0) .  V H , , ( ~ , J  = Y. ( 7 )  

wheref, (x,,; 0 )  is the probability density associated with x,,, and 
f x / y = y , , ( x , , ;  0 )  is the conditional probability density of x,, given Y 
= y,,. Taking the logarithm on both sides of (7) 

logfy(Y,,; 0 )  = logfx(x, , ;  0 )  - logfx/y=y,,(x,,; 0) .  

logfy(Y,,; 0 )  = 

(8) 
Taking the conditional expectation given Y = y,, at a parameter 

value e’, the left side of (8) remains unchanged, and we obtain 

logfx(x,,; 0 )  I y = Y,} 

- Ee,{~ogfX/Y=y,,(~!,; 0 )  I y = Y!,}. ( 9 )  

Define for convenience 

Q,,(e .  0 ’ )  Eo,{  b f x ( x , , ;  0 )  I Y Y,,} (10) 

P,,m 0 ’ )  = ( 1  1 )  

( 12 )  

logfxIy=y,,(x,,; 0 )  I y = Y , } .  

Then (9) reads 

logfy(Y,,; 0 )  = Q,,W 0’) - p , , ( e ,  W. 
Taking the expectation on both sides of (12) with respect to the 
true parameters value 

J ( 0 )  = Eel,{ Q,,(e;  e ’ ) }  - E O , ~ { P , , ( ~ ~  e ’ ) }  
- 

= Q(e, e ’ )  - P ( e ,  e r )  (13 )  

where J ( 0 )  is the objective function defined in ( I ) .  Invoking Jen- 
sen’s inequality 

P , , ( o ,  e ’ )  5 P , , ( w ,  e ’ ) .  

P ( O ,  e’ )  5 P ( w ,  e ’ ) .  

(14) 

(15) 

Therefore 
- 

Hence, recall (13) 
- 
Q ( 0 ,  0 ’ )  > ace’, 0 ’ )  implies J ( 0 )  > J ( 0 ’ ) .  (16 )  

The relation in (16) forms the basis to the following iterative al- 
gorithm: 

max ace, e ” ) )  =) e1/+Il. (17 )  
0 

This algorithm for maximizing J( 0 )  is completely analogous to the 
iterative EM algorithm for maximizing log-likelihood functions 
- [IO]. Following essentially the same considerations as in 1111, if 
Q ( 0 ,  0 ’ )  is continuous in both 0 and e’ ,  the algorithm in (17) 
converges to a stationary point of J ( 0 ) .  where the maximization 
operation ensures tha tsach  iteration increases the value of J( 0 ) .  
Now, observing that Q ( 0 ,  0 ’ )  = Eel,{ Q,,(0, O ’ ) } ,  the iterative 
algorithm in (17) gives rise to the following sequential algorithm: 

max ~ , , + , ( e ,  e”’)) =) (18)  e 

where from (10) 

Q, ,+ I (~ ,  0“”) = Eei,,l{logfx(x,,+i; 011 Y = Y , , + I } .  (19 )  

We may consider the following modification of the algorithm in 
(18): 

max *, ,+l(e) 3 
e 

where 

Fig. I .  FIR system identification 

The cumulative average indicated in (21) may improve the sta- 
tistical stability of the resulting parameter estimates. For y!, = 1 
the algorithm in (20) coincides with the sequential algorithm pro- 
posed by Titterington [ 121. Given the appropriate regularity, the 
resulting sequence estimates converges a.s. and in m.s.  to the true 
parameter value, and the associated limit distribution is readily 
available (see (121, [13]). If we choose y,, < I ,  it corresponds to 
exponential weighting that reduces the effect of past observations 
relative to the new input data. However, it may affect the statistical 
stability and rate of convergence of the algorithm. These issues 
must be explored in depth. 

The notion of complete data can also be incorporated into the 
gradient-based algorithms by invoking the following identity, first 
presented by Fisher [14], and more recently in [15]-[17]: 

Using (22), the log-likelihood gradient (score) of the observed 
data can be computed by taking the conditional expectation of the 
complete data score. We may find this identity very helpful in sit- 
uati‘ons where the direct computation of the observed (incomplete) 
data score is complicated. 

I V .  FIR SYSTEM I D E N T I F I C A T I O N  
Let y, ,  be the noise contaminated output of an unknown causal 

discrete pth-order FIR filter 8 driven by the input signal s,, (see 
Fig. l ) ,  that is 

P -  I 

r = O  
Y,, = c 9, st,-, + U,,  

= eTs,, + P,,  ( 2 3 )  
wheres,, = [s , ,s , , - ,  . . .  s ,,-/ , + I ] T a n d O  = ( O o % 2  . . .  
are the unit sample response coefficients of the filter. Assuming that 
s,, is a known signal and that U,, is a realization from a zero-mean 
Gaussian random variable with a known variance a’ 

(24 )  
I 

Iogfy(y,,; 0 )  = c - - (Y,, - ers,,)? 2a2  

where C is a constant independent of 0. Substituting (24) into (4) 
and carrying out the indicated differentiation operation, we obtain 
the following sequential algorithm: 

(25 )  

(26 )  

where 

e,, + I = y,, + I - 0”’IT s,, + I ‘ 
We recognize the algorithm in (25) as the LMS algorithm. This 

should not be surprising; the LMS method is, in fact, a stochastic 
gradient algorithm applied to the mean-square error (MSE) crite- 
rion, that is 

Eel,{ e2  1 = Eeo{ ( Y,, - e (27 )  
Hence, minimizing the MSE in this case is equivalent to niaxi- 

mizing the Kullback-Leibler information measure. 
Now suppose that s,, is unknown, we only know that it is a re- 

alization from a wide sense stationary (WSS) zero-mean Gaussian 
random process with a prespecified correlation/spectrum function. 
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We assume that s,, and v,, are statistically independent. The LMS 
algorithm cannot be applied to this case since the input (reference) 
signal is not available to us. But, we can still use the algorithm in 
(4).  To derive the score, we shall use (22), where the complete 
data x,, + I is specified by 

Now 

where C is a constant independent of 0. Substituting (29) into (22) 
and performing the indicated differentiation and expectation oper- 
ations, we obtain 

where t,,+ I = Eet,ll { s,, + I /J,, + I }, and s,, +-!+ I = I!&,,, 

Since s,, + I and y,l + I are jointly Gaussian, these conditional ex- 
s,, + Id+ l /Y!,+ I ) .  

pectations are readily available: 

where P = E { s , , s T } .  Substituting (31) and (32) into (30) 

As an alternative, we may use the algorithm specified by (20) 
(the indicated cumulative averaging is necessary here). Following 
straightforward algebraic manipulations, the resulting algorithm is: 

e,: I go+ I (34) e in+ l l  = 

where g,, and G,, are computed using the terms calculated in (31) 
and (32) via the following recursions: 

g,, + I = y,,g,, + t,, + I Y. + I ( 35)  

We may simplify the form of the algorithm by successive sub- 
stitutions of (31) and (32) into (35) and (36) and then (35) and (36) 
into (34). 

Given the appropriate regularity, these algorithms converge to 
the true parameter values, and the limit distribution can also be 
derived by using the results developed in [I21 and [13]. As a by- 
product of these algorithms, we also obtain an on-line estimate of 
the input signal using (31). The algorithm can easily be extended 
to include on-line estimation of unknown signal and noise spectral 
parameters. 
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Weight Adjustment Rule of Neural Networks for 
Computing Discrete 2-D Gabor Transforms 

HONG YAN A N D  JOHN C. GORE 

Abstract-Daugman has recently proposed a neural network model 
for computing the discrete 2-D Gabor transform. We prove here that 
the weight adjustment rule used in the neural network is equivalent to 
the use of Jacobi iteration for solving simultaneous linear equations, 
and we propose more efficient algorithms for solving the problem. 

INTRODUCTION 
The Gabor transform has proven to be very useful for image 

compression and analysis [I]-[3]. The computation of the Gabor 
transform is, however, very complicated since the Gabor elemen- 
tary functions are not orthogonal to each other. Daugman has re- 
cently developed a neural network method for computing the Gabor 
transform [ I ] .  The network consists of two fixed layers and one 
adjustable layer. The weights of the fixed layers are related to the 
Gabor elementary functions only, but the weights of the adjustable 
layer need to be determined iteratively in order to find an optimal 
representation of the image. Daugman used a least squares error 
criterion and a gradient based weight adjustment rule, which may 
be implemented by using an adaptive control signal that is the dif- 
ference between a feedforward signal and a feedback signal. We 
show here that the neural network actually solves a set of simul- 
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